Effects of binning velocity ratios on C-wave imaging in the presence of dips

Fabio Mancini1,2, Xiang-Yang Li1, Anton Ziolkowski2 and Tim Pointer3

1British Geological Survey, Murchison House, West Mains Road, Edinburgh EH9 3LA, UK
2Department of Geology and Geophysics, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, UK
3BG Group, 100 Thames Valley Park Drive, Reading, Berkshire, RG6 1PT, UK

doi:10.1002/2014EF002433

Abstract

C-wave processing usually requires iterations involving velocity analysis and binning. As a first step the data are binned using a single value of γ (V_p/V_s) before any P-wave independent velocity analysis, therefore sorting the data into Asymptotic Common Conversion Points. We analyse the effects of this initial binning value of γ on C-wave imaging in areas of dipping reflectors. The data are from a 2D 4C line acquired over the Lomond field, in the North Sea. The results show that the C-wave NMO velocities in the presence of dips are sensitive to changes in the value of the binning velocity ratio. C-wave imaging relies on accurate knowledge of the effective velocity ratio γ_{eff}. This parameter is determined by a combination of the vertical and the NMO velocity ratios. Errors in the C-wave NMO velocity lead to wrong estimates of γ_{eff}. Running a pre-stack time migration prior to the calculation of γ_{eff} reduces velocity errors due to the presence of dips. We can further improve the accuracy of γ_{eff} by using the CCP-scanning technique.

ACCP binning, initial γ value, γ_{asy}

As the up-going leg of the C-wave raypath (S-wave) is slower than the down-going leg (P-wave), Snell's law requires that it is reflected at a more acute angle to the normal to the interface. This means that the conversion point is generally shifted towards the receiver so that the Common Mid Point (CMP) assumption is no longer valid even for plane horizontal layers. The Common Conversion Point (CCP) position is defined not only by the acquisition geometry but also by the velocity ratio between P and S-waves (γ_{eff}). γ_{eff} changes with depth and may change laterally. As a first approximation we can keep it constant, binning the data into Asymptotic CCP (ACCP) gathers. For convenience we use γ_{asy} to denote this initial value of γ_{eff}. From Thomsen (1999), we have:

$$x_c = \frac{\gamma_{\text{asy}} x}{1 + \gamma_{\text{asy}}}, \quad (1)$$

$$\gamma_{\text{eff}} = \frac{\gamma_n^2}{\gamma_0}, \quad (2)$$

where γ_0 is the vertical velocity ratio extracted as the ratio of the arrival times on the zero-offset sections (P-wave and C-wave stacks) and γ_n is the NMO velocity ratio (v_{pn}/v_{sn}). Equation (1) relates the CCP position (x_c) to the CMP position (x). The parameter γ_{eff} takes into account the effects of layering induced polar anisotropy. γ_{eff} can be also estimated by applying the CCP-scanning technique (Audebert et al, 1999). This technique is robust in the presence of strong geological structures and has the advantage of not relying directly on the values of the velocity ratios, but is based on imaging concepts, so it can be used independently of the results of equation (2).

Effects of γ_{asy} on C-wave NMO velocities

The initial C-wave velocity analysis is run on ACCP gathers. To check the sensitivity of the C-wave NMO velocity (v_{cm}) to γ_{asy}, we picked velocities after binning the data with different values of γ_{asy}. We separated the positive and negative offsets before picking, because diodic velocity effects are present in the Lomond Field (Mancini et al., 2002). The resulting velocity fields for the positive offsets are shown in Figure 1. On the left-hand side the C-wave positive offset stacks is shown for reference. The γ_{asy} used were 1.25, 2.00 and 2.75. As γ_{asy} increases, the seismic line is "squeezed"
toward the receivers, the minimum in the velocity field induced by the gas (from ACCP 800) becomes smaller, the whole velocity field appears smoother, and the lateral difference in velocity decreases. It can be seen that the greatest changes occur in the zone around 5000 ms and CCPs 600-750. This is where the dips are greatest. The presence of dips makes velocities dependent on γ_{eff}. Where dips are negligible velocities are not sensitive to changes in γ_{eff}, Dai and Li (2002).

Figure 1: C-wave positive offset stack and velocity fields for different values of γ_{asy}. From left to right the binning values are 1.25, 2.00, 2.75.

This change of shape in the velocity field is important when we calculate γ_{eff} using equation (2), as v_{cn} is used for the calculation of γ_n. Equation (2) also requires γ_0. To extract γ_0 we have to correlate the events from the same reflector on the stacked P and C-sections, which gives the vertical arrival times for P and C-waves, t_p0 and t_c0. This step is always subjective and could be a big source of errors. Well log information could supply γ_0 at a well location when a dipole shear log is acquired, but the results have to be carefully considered as shear logs in deviated wells are often unreliable (Leaney et al., 2000; Mancini et al., 2002).

Sensitivity analysis

To gain more insight into the effects of γ_{eff} on v_{cn}, we calculated the velocity values at $t_c = 5000$ ms (reservoir depth in C-wave time) for the positive offsets, resulting from velocity analysis on ACCP gathers binned with different values of γ_{asy}: 1.25, 2.00 and 2.75. Given v_{cn} and v_{pn} form P-wave processing we then calculated the values of γ_n and γ_{eff} at the same arrival time, using a constant $\gamma_0 = 2.80$ (obtained from event correlation) and the S-wave NMO velocity, calculated as follows

$$v_{\text{sn}}^2 = v_{\text{cn}}^2 \left(1 + 1/\gamma_0\right) - \frac{v_{\text{pn}}^2}{\gamma_0}. \quad (3)$$

We quantify changes in v_{cn}, γ_n and, γ_{eff} using their ratios. Figure 2 summarises the results. The x-axis is the ACCP number, the y-axis is the ratio. The results for the velocity show a maximum velocity change of about 5% for a 37.5% change in γ_{asy}. For $\gamma_{\text{asy}} = 1.25$ and 2.00, (γ_{asy} relative change of 60%), the maximum v_{cn} change increases slightly, up to 7%. The difference is higher on the sides, where we have steep dips, and lower in middle of the 2D line.

γ_n and γ_{eff} change in the opposite direction to v_{cn}. The magnitude of the change increases from v_{cn} to γ_n to γ_{eff}. There is a 23% change in γ_{eff} for a 5% change in v_{cn} and there is a 31% change in γ_{eff} for a 7% change in v_{cn}. For minor variations in v_{cn} less than 2%, the change in γ_{eff} is within 10%. We can also notice that, as the salt dome structure shifts from left to right for higher values of γ_{asy} (confront Figure 1), the position of the area of minimum change shifts as well. These results show how small changes in v_{cn} have a great effect on the calculation of γ_{eff}. If the resulting value of γ_{eff} differs significantly from the γ_{asy} used for velocity analysis, new velocity analyses after more appropriate binnings are necessary.
Figure 2: Relative changes in v_{cn}, γ_n and γ_{eff} for different γ_{asy}. (a) The blue line is for $v_{cn}(1.25)/v_{cn}(2.00)$, the purple line is for $\gamma_n(1.25)/\gamma_n(2.00)$ and the yellow line is for $\gamma_{eff}(1.25)/\gamma_{eff}(2.00)$. (b) Same colours as in (a) for $v_{cn}(2.00)/v_{cn}(2.75)$, $\gamma_n(2.00)/\gamma_n(2.75)$ and $\gamma_{eff}(2.00)/\gamma_{eff}(2.75)$.

Estimating γ_{eff}: DMO vs. PSTM

Equation (2) is based on plane horizontal layers. Before using equation (2) we should minimise the effects of dip in the data. We consider separately the effects of DMO and pre-stack time migration (PSTM). Figure 3 shows two diagrams for γ_{eff}, one after DMO, and one after PSTM. The original γ_{asy} used for the ACCP binning was 1.50 in both cases. On the left-hand side the P-wave stack is shown for structural reference. Both γ_{eff} diagrams are shown in P-time. After DMO the resulting γ_{eff} is too low, even less than 1 on the sides of the structure. This implausible result is caused by the anomalously high C-velocities obtained on both flanks of the salt dome, where the dips are highest. The high values of P-velocities due to the salt are also clear. DMO does not adequately correct for the effects of dip for the converted waves. After PSTM γ_{eff} is generally higher and more physically acceptable: on the flanks of the salt dome the value ranges from 1.2 to 1.4, while on top of the dome it ranges from 1.6 to 1.8. The minima caused by the dips are now reduced.

Figure 3: Left: P-wave stack, middle: values of γ_{eff} calculated using equation (2) after DMO, right: the same after PSTM. Even after DMO the effects of the dips are clearly visible in the areas of low γ_{eff}. After PSTM these effects are reduced. The colour scale is the same.

CCP-scanning technique

The CCP-scanning technique can be used as an independent tool to extract γ_{eff}. We apply it in the time domain (Li et al, 2001), binning the positive and negative offsets with different values of γ_{asy}, looking for the value which gives better image focusing and less (or no) lateral shift in the geological structure. We used values of $\gamma_{asy} = 1.25, 1.50, 1.75, 2.00$, Figure 4. As γ_{asy} increases, the salt dome shifts toward the right (higher ACCP numbers) for the positive offset image and towards the left for the negative one. The negative offset image appears to be disturbed by the presence of gas and this makes the interpretation slightly more difficult. The correct value of γ_{asy} seems to be between 1.50 and 1.75, which agrees which the value of γ_{eff} given by equation (2) after PSTM.
In difficult areas for velocity analysis, such as those affected by gas clouds or severe dips, the use of the CCP-scanning technique becomes a necessary step (Li et al., 2001). Its use as the first tool for estimating γ_{eff} can reduce the risk of errors and the need for more iterations.

Figure 4: Positive (top ones) and negative offsets binned with different values of γ_{asy}, from left to right: 1.25, 1.5, 1.75, 2.0. The value that creates the best structural alignment for two offsets is between 1.5 and 1.75.

Discussions and conclusions

In areas affected by dip v_{cn} is sensitive to changes in γ_{asy}, the initial value of γ_{eff}. Then, small errors in the value of v_{cn} are propagated as the square in the calculation of the next estimate of γ_{eff} and cannot be ignored as they can lead to unrealistic values of γ_{eff}. We have found that the effect of dip can be reduced significantly by running PSTM on ACCP gathers. It is advantageous to run it prior γ_{eff} estimation. Some positioning errors could still remain if the original binning value is not correct. The CCP-scanning technique is a robust tool that should also be used in order to improve the estimation of γ_{eff}.

Acknowledgements

Fabio Mancini has a Natural Environment Research Council Industrial CASE Studentship. We thank BG Group for providing the data, for the permission to show them and for additional sponsorship.

References

Thomsen, L., 1999, Converted-Wave reflection seismology over inhomogeneous, anisotropic media, Geophysics, 64, 678-690.