Analysis of the seismic response of an anisotropic viscoelastic reservoir

Z.Q. Guo (British Geological Survey; Jilin University, China), X.Y. Li (British Geological Survey)

SUMMARY

In this paper, anisotropic viscoelastic media are used to model hydrocarbon reservoirs and to simulate reservoir features such as aligned fractures, fine-layered structures, and fluid saturation. Full wavefield seismic modeling is carried out, based on the Fourier pseudospectral method for the computation of spatial derivatives. We model a common shot reflection survey over anisotropic viscoelastic reservoirs; the synthetic seismograms show that the reservoirs’ structure, anisotropy and attenuation considerably affect the seismic responses. The modeling results show that the converted and reflected S-wave has a reasonable strength although the energy of the reflected P-wave from the interface below the reservoir is too weak to be detected. The seismic response of a Q interface is also analyzed, where the impedance contrast is very weak but the contrast in attenuation is significant. The boundary between the elastic background and the viscoelastic reservoir forms a Q interface, and the waves reflected from this Q interface have significant amplitudes.
Introduction

Hydrocarbon reservoirs can be represented by anisotropic viscoelastic media. Carcione (1990) investigated attenuation in such media, and developed the corresponding wave equations, where the numerical problem was solved by using a time integration technique. Ruud and Hestholm (2005) simulate seismic waves in orthorhombic viscoelastic media by a finite differences method. Sinha (2007) uses a layer matrix approach to generate full waveform synthetics in horizontally multilayered anisotropic attenuating media and analyzes seismograms using a spectral decomposition method. Based on the theory of Carcione, this study simulates the seismic responses of a highly dissipative reservoir, and analyzes the effect of anisotropy and attenuation on reflected and transmitted P- and S-waves. A geologic model is designed to simulate reservoirs, including anisotropic attenuating regions with specific configuration and structure. The model can describe reservoir features such as aligned fractures, fine-layered structures, and fluid saturation. The seismic response of a Q interface is also considered, where the impedance contrast is very weak but the contrast in attenuation is significant across the boundary between the elastic and viscoelastic media. Full wavefield seismic modelling in this study is based on the Fourier pseudospectral method for the computation of spatial derivatives (Kosloff and Baysal, 1982; Carcione, 1993).

Theory

The wave equations developed by Carcione (1990) for seismic wave propagation in anisotropic viscoelastic media are formulated in a velocity-stress scheme, where memory variables are introduced to model relaxation mechanism. Full waveform simulation in this study uses the Fourier pseudospectral method to compute spatial derivatives, and a finite difference method to calculate temporal derivations. For example, the calculation of the spatial first-order differential for wavefield φ along the x-direction is performed using a basic principle of the Fourier transform

$$D_1 \varphi = \sum_{k_1=0}^{k_1(N)} ik_1 \tilde{\varphi}(k_1) \exp(ik_1x)$$

(1)

Where $\tilde{\varphi}$ is the Fourier transform of φ and $k_1(N)$ is the Nyquist wave-number. The factor ik_1 is multiplied in the frequency domain, which corresponds to the derivative in the time domain.

Modeling studies

The geologic model is designed as shown in Figure 1. The corresponding material properties are indicated in Table 1. The model consists of 5 regions. Regions 1 and 2 are isotropic elastic media with different impedances. Regions 3, 4, and 5 represent reservoirs embedded in the isotropic media. Two types of reservoirs are considered in the model. Region 3 represents a sandstone reservoir which has vertical aligned fractures saturated with fluids, and can therefore be described as a viscoelastic HTI medium. Region 4 and 5 are reservoirs consisting of sand/shale fine layer structures and can be modelled as viscoelastic VT1 media. Region 3, which is located at the depth range between 500m and 1000m, is lens-shaped with a lateral extent of 1000m. Regions 4 and 5 are relatively thin, with a lateral extent of 2000m.

The model is discretized on a numerical mesh for simulation, with vertical and horizontal grid spacing of 10m, and 256x1024 grid points. Absorbing zones are placed at the four boundaries to eliminate wraparound. The source is an explosive force generating a Ricker-wavelet with a dominant frequency of 40Hz, and is located at the 5000m position. This type of split spread is deployed for surface seismic recording. The maximum offset is 4000m on each side of the source and the spacing between geophones is 10m.

A snapshot of the x-component at a travel time of 1000ms is also indicated on Figure 1 to demonstrate wave propagation through anisotropic viscoelastic reservoirs.
Figure 2 represents synthetic seismograms of z- and x-components corresponding to the geometry in Figure 1. For comparison, the case of an elastic reservoir which has infinite quality factor Q is also calculated. Figures 2(a) and (b) represent the case of z-component for viscoelastic and elastic reservoirs, respectively. Figure 2(c) is the difference of Figures 2(a) and (b), and therefore indicate the effect of attenuation on the reflected P- and S-waves. Figures 2(d), (e) and (f) are the corresponding synthetics seismograms for the x-components. In Figure 2(a), the events denoted by numbers 1 and 2 are the reflected P-waves from the top and bottom of reservoir 4, respectively. In Figure 2(c), as denoted by the red circle, the effect of attenuation on the P-wave reflected from the reservoir bottom is significant. The effects of reservoirs 3 and 5 are significant at far offset. In figure 2(d), the events indicated by numbers 3, 4 and 5 are the converted reflected S-waves from the top and bottom of reservoir 4, and from the interface under reservoir 4, respectively. Red circle in figure 2(f) indicates the effect of attenuation on converted P-S reflection from the bottom of reservoir 4. More interestingly, for both elastic and viscoelastic cases, no obvious reflected P-wave energy from the interface under reservoir 4 can be observed. This may result from the large impedance contrast between medium 1 and reservoir 4, so that most of the energy has been reflected. This can be seen in the reflection coefficients of Figure 3(a), where the colors black, blue and green correspond to P-P reflections from the top and bottom of reservoir, and the reflection from the interface between medium 1 and 2, respectively. On the other hand, as denoted by event 5 in Figure 2(d), the converted P-S reflection from the interface under reservoir 4 has a detectable energy in spite of the presence of anisotropy and attenuation in the reservoir. Figure 3(b) shows the corresponding converted P-S reflection coefficients.

In the second example, we consider Q interfaces in which only strong attenuation contrasts exist between the reservoirs and their surroundings, with zero contrast of velocities and densities across the reservoir boundaries (Carcione, 1993). In this case, reservoirs 3, 4 and 5 in Figure 1 have the same velocities and density as medium 1, but possess finite quality factors. Figures 4(a), (b) and (c) represent the z-component and (d), (e) and (f) the x-component, respectively. As shown in Figure 4, the attenuation contrast alone can be a strong reflector. Events 1 and 2 indicated by black arrows in Figure 4(a) show reflected P-waves from the top and bottom of attenuation region 4, and event 3 in Figure 4(d) indicates a converted P-S reflected wave from the attenuation zone. In contrast, in the absence of an attenuation zone and Q interfaces, only reflected P-waves and converted P-S waves exist, which are indicated as events 4 and 5 in Figure 4 (b). Figures 4(c) and (f) show the effect of a Q interface on reflected waves, and the effects of attenuation are indicated by red circles.

Figure 5(a) shows the P-P reflection and transmission coefficients for a series of Qp and Qs. The P-P reflection coefficients increase and the P-P transmission coefficients decrease dramatically at the large incidence angles. As can be seen, P-P reflection energy is non-zero for viscoelastic cases and the amplitudes decrease with increasing quality factor Qp and Qs. Figure 5(b) is the corresponding AVO cross-plot for P-P waves. The arrow in the AVO cross-plot Figure 5(b) indicates the gradient-intercept trend for increasing quality factors.

<table>
<thead>
<tr>
<th>Table 1. Material properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Where, v11, v33, v44, and v13 are Thomson anisotropic velocities for TI media. ρ is density. Qp and Qs are P- and S-wave quality factors, respectively.

Conclusions

Modelling results show that the attenuation of anisotropic reservoirs has a significant effect on seismograms. The study also indicates the advantage of converted P-S imaging at the lower layer in
the presence of an anisotropic and viscoelastic reservoir above it. The Q interface can be a reflector, even if the impedance contrast is weak but if the attenuation contrast is significant. One of the applications of anisotropic viscoelastic simulation is to model time-lapse variation of the attenuative properties of underground media due to fluid injection.

Figure 1 Geologic model and snapshots of x-component demonstrating wave propagation at 1000ms. Regions 1 and 2 are isotropic elastic media. Regions 3, 4 and 5 marked in yellow indicate reservoirs. Region 3 is a viscoelastic HTI medium and regions 4 and 5 represent viscoelastic VTI media. An explosive source is located at the position 5000m, with a maximum offset of 4000m on each side.

Figure 2 Synthetic seismograms corresponding to the model in Figure 1. (a) and (b) represent the x-component of the viscoelastic and elastic reservoir, respectively. (c) shows the difference between them. (d), (e) and (f) are the corresponding seismograms for the z-component.

Figure 3 Reflection coefficients of (a) P-P waves in solid lines and (b) converted P-S waves in dashed lines. Black and blue curves correspond to the reflection coefficients of the top and bottom boundaries of reservoir 4. Green curves indicate the reflection coefficients for the interface between medium 1 and 2.
Figure 4 Synthetic seismograms corresponding to the Q interface model. (a) and (b) represent the x-component for the presence and absence of a Q interface, respectively. (c) shows the difference between them. (d), (e) and (f) are the corresponding seismograms for the z-component.

Figure 5 (a) Reflection and transmission coefficients of P-P waves for Q interface, and (b) corresponding AVO cross-plot for P-P waves.

Acknowledgements

This work is supported by Edinburgh Anisotropy Project of the British Geological Survey, and is presented with the permission of the Executive Director of British Geological Survey (NERC).

References

