Generalized form of reflection coefficients in terms of impedance matrices of qP-qP and qP-qS waves in TI media

Feng Zhang and Xiangyang Li

CNPC Geophysical KeyLab, China University of Petroleum, Beijing, China

Summary

Reflection coefficients of qP- and qS- incident waves in orthorhombic media can be explicitly expressed by means of impedance matrices. In this paper, we extend previous studies and derive generalized linearized equations of qP-qP and qP-qS waves. Impedance matrices representing complete reflection properties of the medium can be inverted based on the simplified equations. Besides, these equations are reduced for an isotropic medium with a vertical symmetry axis (VTI) or a horizontal axis (HTI). We discuss their accuracy and applicability by means of three models: two models of VTI/VTI interfaces with moderate and strong anisotropy, and a VTI/HTI model. The approximations have sufficient accuracy for relatively strong anisotropy. Therefore they can be applied in the characterization of unconventional resources, for example, shale gas or coalbed methane.
Introduction

AVO analysis and inversion are essential techniques in the characterization of hydrocarbon reservoirs. Their development is based on the plane wave reflection coefficients from an interface between two subsurface media. The first analytic solution of isotropic media is published by Zoeppritz (1919). Subsequently, a series of approximations of PP- and PS-wave reflection coefficients have been studied for AVO analysis and inversion.

Analytical solutions of reflection coefficients in anisotropic media can be found for wave propagation in symmetry planes, such as by Daley and Hron (1977) for transversely isotropic (TI) media with vertical symmetry axis, and Schoenberg and Protazio (1992) for symmetric plane of orthorhombic media. On the assumption of weak TI media, different linear equations of qP-qP and qP-qS waves have been investigated, for example by Ruger (1997) and Jilek (2002).

In this paper, we extend previous studies and derive a generalized equations of reflection coefficients at a planar interface separating two layers with symmetry planes. Such as by Daley and Hron (1977) for transversely isotropic (TI) media with vertical symmetry axis, and Schoenberg and Protazio (1992) for symmetric plane of orthorhombic media. On the assumption of weak TI media, different linear equations of qP-qP and qP-qS waves have been investigated, for example by Ruger (1997) and Jilek (2002).

In this paper, we extend previous studies and derive a generalized equations of reflection coefficients at a planar interface separating two layers with symmetry planes. Such as by Daley and Hron (1977) for transversely isotropic (TI) media with vertical symmetry axis, and Schoenberg and Protazio (1992) for symmetric plane of orthorhombic media. On the assumption of weak TI media, different linear equations of qP-qP and qP-qS waves have been investigated, for example by Ruger (1997) and Jilek (2002).

Generalized form of reflection coefficients and inversion in orthorhombic media

Orthorhombic anisotropy results from a combination of thin layers and aligned fractures. It is one of the most common forms of anisotropy in sedimentary basin (Bush and Crampin, 1991). In this case, we use qS to denote the quasi-SV wave, because the qP- and qSV-wave are decoupled from the SH wave in the symmetry planes.

An explicit equation for reflection coefficients at a planar interface separating two layers with orthorhombic anisotropy is expressed by

$$ R_i = \left[\begin{array}{ccc} R_{qqpp} & R_{qqps} & R_{qspq} \\ R_{qqsp} & R_{qqss} & R_{qspq} \end{array} \right] = \left(X^i \right)^{-1} \left(Y^i \right) $$

where i refers to the ith medium layer, and X_i and Y_i are the frequency independent impedance matrices introduced by Schoenberg and Protazio (1992):

$$ X_i = \begin{bmatrix} \sin \theta_i^* & \cos \phi_i^* \\ \cos \theta_i^* & \sin \phi_i^* \end{bmatrix}, \quad Y_i = \begin{bmatrix} -\sin(\theta_i^* + \phi_i^*) \cos(\phi_i^* + \phi_i) / \alpha_i - \cos(\phi_i^* + \phi_i) \sin(\phi_i^* + \phi_i) / \beta_i \\ \cos(\theta_i^* + \phi_i^*) - \sin(\phi_i^* + \phi_i) / \beta_i \end{bmatrix}. $$

In the above equations, α_i and β_i are the phase velocities of the qP- and qS-wave, respectively; $\rho_i = (C_{33(i)} - C_{13(i)}) / 2\beta_i^2$ reduces to the density ρ_i for isotropic media; the polarization directions are denoted as θ_i^* (qP-wave) and ϕ_i^* (qS-wave), and $\sin \theta_i^* = (1 + \zeta_{P(i)}) \sin \theta_i$; $\sin \phi_i^* = (1 + \zeta_{S(i)}) \sin \phi_i$, where

$$ \zeta_{P(i)} = \frac{C_{11(i)} - C_{33(i)}}{(C_{11(i)} - C_{55(i)})} \left(\delta \cos^2 \theta_i - \epsilon_{P}^* \right) \quad \text{and} \quad \zeta_{S(i)} = -\frac{C_{11(i)} - C_{55(i)}}{(C_{11(i)} - C_{55(i)})} \left(\delta \cos^2 \phi_i + \epsilon_{S}^* C_{55(i)} \cos^2 \phi_i / (C_{11(i)} \cos^2 \phi_i) \right) $$

representing the polarization deviation from the propagation direction θ_i and ϕ_i; and $\delta = (2C_{55(i)} + C_{13(i)} - C_{11(i)}) / C_{11(i)}$, $\epsilon_{P}^* = \rho_i \beta_i^2 / C_{11(i)} - 1$, and $\epsilon_{S}^* = \rho_i \beta_i^2 / C_{55(i)} - 1$. The determinants of the impedance matrices are

$$ |X_i| = C_{33(i)} \sin \theta_i^* - \cos \theta_i^* \cos \phi_i^* / \alpha_i, \quad |Y_i| = C_{55(i)} \cos \phi_i^* / \beta_i.$$

In order to evaluate the effect of anisotropy on the AVO response and to invert for the elastic properties, we derive a simple expression for reflection coefficients in terms of the first-order elastic properties. Equation (1) can be approximated for media of small impedance contrast as
\[\mathbf{R}_j \approx \frac{1}{2} \left(\mathbf{X}^+ \Delta \mathbf{X} - \mathbf{Y}^+ \Delta \mathbf{Y} \right) \] (3)

In equation (3), \(\Delta \) and \(\Xi \) denotes the average and change of the elastic properties of the \(i \)th and the \((i+1)\)th medium layers, respectively.

Inversion of impedance matrix

The impedance matrices \(\mathbf{X} \) and \(\mathbf{Y} \) are functions of elastic parameters. They represent the complete reflection properties of the medium. If the amplitude of all types of reflection from P and S incident waves are recorded, \(\mathbf{X}^+ \Delta \mathbf{X} \) and \(\mathbf{Y}^+ \Delta \mathbf{Y} \) can be inverted from \(\mathbf{R} \) based on equation (3). Then \(\mathbf{X} \) and \(\mathbf{Y} \) can be solved by the recursive matrix-inversion formula that extends the conventional recursive equation:

\[X_i = X_0 \prod_{k=1}^i X_k / X_{k-1} \quad \text{and} \quad Y_i = Y_0 \prod_{k=1}^i Y_k / Y_{k-1} \] (4)

Linearization of Reflection coefficients

The matrices of impedance contrast \(\Delta \mathbf{X} \) and \(\Delta \mathbf{Y} \) can be derived by differentiating \(\mathbf{X} \) and \(\mathbf{Y} \) in each of the relevant variables:

\[d = \Delta \rho \frac{\partial \mathbf{X}}{\partial \rho} + \Delta \mathbf{C}_{33} \frac{\partial \mathbf{X}}{\partial \mathbf{C}_{33}} + \Delta \mathbf{C}_{55} \frac{\partial \mathbf{X}}{\partial \mathbf{C}_{55}} + \Delta \mathbf{C}_{13} \frac{\partial \mathbf{X}}{\partial \mathbf{C}_{13}} + \Delta \alpha \frac{\partial \mathbf{X}}{\partial \alpha} + \Delta \beta \frac{\partial \mathbf{X}}{\partial \beta} + \Delta \theta \frac{\partial \mathbf{X}}{\partial \theta} + \Delta \phi \frac{\partial \mathbf{X}}{\partial \phi} + \Delta \zeta_\rho \frac{\partial \mathbf{X}}{\partial \zeta_\rho} + \Delta \zeta_S \frac{\partial \mathbf{X}}{\partial \zeta_S} \] (5)

The reflection coefficients of \(qPqP \)- and \(qPqS \)-waves are expressed by means of the average and contrast of the elastic properties of the adjacent media:

\[R_{qPqP} = \frac{1}{2} \left(\frac{\Delta \mathbf{C}_{33}}{\mathbf{C}_{33}} \frac{\Delta \alpha}{\alpha} + \frac{\Delta \mathbf{C}_{55}}{\mathbf{C}_{55}} \frac{\Delta \beta}{\beta} - \frac{2 \Delta \mathbf{C}_{13}}{\mathbf{C}_{13}} \frac{\Delta \zeta_\rho}{\zeta_\rho} \right) \sin^2 \theta + \frac{1}{2} \left(1 - \frac{2 \Delta \mathbf{C}_{33} \alpha}{\alpha} \right) \sin^2 \theta \tan^2 \varphi + \frac{1}{2} \left(\frac{\Delta \mathbf{C}_{55} \beta}{\beta} \right) \sin^2 \theta \tan^2 \varphi \Delta \zeta_\rho \] (6)

\[R_{qPqS} = -\frac{\sin \vartheta}{\cos \varphi} \left[\frac{1}{2} \left(\frac{\Delta \mathbf{C}_{33}}{\mathbf{C}_{33}} - \frac{2 \Delta \alpha}{\alpha} \right) \cos \vartheta \cos \varphi + \frac{\Delta \mathbf{C}_{55}}{\mathbf{C}_{55}} \frac{\beta}{\beta} \right] \sin^2 \theta + \frac{1}{2} \left(1 - \frac{\sin^2 \vartheta}{\sin^2 \theta} \right) \Delta \zeta_\rho \] (7)

Simplified solution for weak VTI media

First, we present the reflection coefficients for a VTI medium simplified from equations (6) and (7). A VTI medium has a vertical symmetry axis. The anisotropy results from a sequence of thin layers (Bush and Crampin, 1991). For the isotropic media, \(\rho = \rho_0 \), \(\alpha = \alpha_0 \), \(\beta = \beta_0 \) and \(\Delta \zeta_\rho = \Delta \zeta_S = 0 \); the average elastic constants and their contrast across the interface is given by \(\mathbf{C}_{33} = \rho_0 \alpha_0^2 \), \(\mathbf{C}_{55} = \rho_0 \beta_0^2 \) and \(\Delta \mathbf{C}_{33} = \mathbf{C}_{13} = \Delta \rho / \rho_0 + 2(\Delta \alpha / \alpha_0) \), \(\Delta \mathbf{C}_{44} = \mathbf{C}_{44} = \Delta \rho / \rho_0 + 2(\Delta \beta / \beta_0) \).

Considering weak VTI anisotropy, Thomsen (1986) proposed a set of parameters which are linked to practical seismic measurements:

\[e_i = \frac{C_{13}(i)}{2C_{33}(i)} \quad \text{and} \quad \sigma_j = \frac{C_{44}(i) + C_{13}(i) - C_{33}(i) - C_{44}(i)}{2C_{33}(i)C_{44}(i)} \] (8)

and the phase velocities are expressed as

\[\alpha_j \approx \alpha_0(i) \left[1 + (\delta^2 \sin^2 \theta \cos^2 \theta + \epsilon_i \sin^4 \theta) \right] \quad \text{and} \quad \beta_j \approx \beta_0(i) \left[1 + (\delta^2 \sin^2 \theta \cos^2 \theta + \epsilon_i \sin^4 \theta) \right] \] (9)

Other relevant variables can be written as

\[\rho = \rho_0 \left[1 - \frac{1}{2} \frac{\Delta \alpha / \alpha_0}{\rho_0} \frac{\delta - \epsilon}{\delta - \epsilon} \sin^2 \vartheta \cos^2 \vartheta \right] \]

\[\Delta \zeta_\rho = \epsilon_0 \left[\Delta \delta + 2(\Delta \alpha - \Delta \delta) \sin^2 \theta \cos^2 \theta + \epsilon_0 \sin^2 \vartheta \cos^2 \vartheta \right] \]

\[\Delta \zeta_S = \epsilon_0 \left[\Delta \delta + 2(\Delta \alpha - \Delta \delta) \sin^2 \theta \cos^2 \theta + \epsilon_0 \sin^2 \vartheta \cos^2 \vartheta \right] \]

Considering polarization deviations are small, impedance matrices and their contrast can be expressed as

\[\mathbf{X} \approx \mathbf{X}^{(0)} + \mathbf{X}^{(1)} \quad \text{and} \quad \mathbf{Y} \approx \mathbf{Y}^{(0)} + \mathbf{Y}^{(1)} \]

\[\Delta \mathbf{X} \approx d(\mathbf{X}^{(0)}) + d(\mathbf{X}^{(1)}) \quad \text{and} \quad \Delta \mathbf{Y} \approx d(\mathbf{Y}^{(0)}) + d(\mathbf{Y}^{(1)}) \] (10)

Noting that \(\mathbf{X}^{(0)} \) and \(\mathbf{Y}^{(0)} \) are small, we have

\[\mathbf{R}_j \approx \frac{1}{2} \left(\mathbf{X}^{(0)} - \mathbf{X}^{(1)} \right) - \mathbf{Y}^{(0)} - \mathbf{Y}^{(1)} \] (11)
In the case of VTI media, the impedance matrices that can be inverted are now
\[\Delta X^{(0)} - \Delta + \Delta \]
\[\Delta Y^{(0)} - \Delta + \Delta \]
\[(0)X \]
\[(0)Y \]

are the isotropic impedance matrices
\[\begin{bmatrix} \cos \theta \tan \phi \frac{\alpha}{\alpha} - \sin \phi \tan \phi \frac{\beta}{\beta} \\ \sin \phi \tan \phi \frac{\alpha}{\alpha} + \cos \theta \tan \phi \frac{\beta}{\beta} \end{bmatrix} \]

\[\Delta Y^{(0)} = \begin{bmatrix} \cos \theta \tan \phi \frac{\alpha}{\alpha} - \sin \phi \tan \phi \frac{\beta}{\beta} \\ -\sin \theta \tan \phi \frac{\alpha}{\alpha} + \cos \theta \tan \phi \frac{\beta}{\beta} \end{bmatrix} \]

and
\[\begin{bmatrix} \Delta \phi \sin \theta \\ -\Delta \phi \cos \theta \tan \phi \frac{\beta}{\beta} \end{bmatrix} \]

\[(0)X \]

Substituting these equations into equations (6) and (7) yields
\[R_{qPqP(i)}(\theta) = R_{PPO(i)}(\theta) + \frac{1}{2} \Delta \delta \sin^2 \theta + \frac{1}{2} \Delta \epsilon \sin^2 \theta \tan^2 \theta \]

\[R_{qPqS(i)}(\theta) = R_{PPO(i)}(\theta) + \frac{1}{2} \sin \theta / \cos \phi \Delta \delta \sin^2 \theta + 2(\Delta \epsilon - \Delta \delta) \sin^4 \theta + \frac{1}{2} \sin \theta / \cos \phi - \sin \phi / \cos \phi \Delta \zeta_p \]

Figures 1 and 2 compare the exact PP- and PS-wave reflection coefficients with the different approximations introduced above. Two single-interface models with VTI anisotropy are used for the evaluation. The first model has moderate anisotropy (20% for P-wave velocity and 10% for S-wave velocity), while the second model has strong anisotropy (26% for P-wave velocity and 48% for S-wave velocity). For both cases, the generalized approximations of qP-qP (equation 6) agree well with the exact numerical results, even at a large angle of incidence. The reduced PP-wave approximation shows good accuracy when the angle is smaller than 30°. A similar situation is found in the case of RqPS, except the accuracy of the generalized approximation in Figure 1b is relatively lower.

AVO response in fractured HTI media

A medium containing aligned vertical fractures gives rise to effectively HTI anisotropy. The derivation of the reflection coefficients for weak HTI media is similar to that of VTI media.

\[R_{qPqP(i)}(\theta) = R_{PPO(i)}(\theta) + \frac{1}{2} \Delta \delta - 2 \Delta \epsilon + \frac{(\beta_0 / \alpha_0)^2}{\Delta \gamma} \sin^2 \theta + \frac{1}{2} \Delta \epsilon \sin^2 \theta \tan^2 \theta \]

\[R_{qPqS(i)}(\theta) = R_{PPO(i)}(\theta) + \frac{1}{2} \sin \theta / \cos \phi [2 \beta_0 / \alpha_0 \Delta \gamma \cos \theta \cos \phi + (\Delta \delta - 2 \Delta \epsilon) \sin^2 \theta + 4(\beta_0 / \alpha_0)^2 \Delta \gamma \sin^2 \theta + 2(\Delta \epsilon - \Delta \delta) \sin^4 \theta + \frac{1}{2} \sin \theta / \cos \phi - \sin \phi / \cos \phi \Delta \zeta_p] \]
where the Thomas parameters are defined in different way, due to the 90° rotation of the symmetry axis. In order to evaluate the effects of fractures on the multicomponent AVO response, we build a model with an overburden shale and four types of sand. The shale has weak VTI anisotropy ($\epsilon=0.01, \delta=0, \text{and } \gamma=0.01$); the gas sand is discussed in Gassmann (1951) and Castagna (1993). This model has a high/low impedance contrast, and is common for gas reservoirs (solid curve in Figure 3). Gas sands with different fracture density are simulated by Hudson’s equation (Hudson 1981). The fracture-induced anisotropy reduces the amplitude of the $qP-qP$ wave, especially for wide incident angles. In contrast, the amplitude of the $qP-qS$ wave increases with increasing fracture density, from 0° up to nearly 35°.

Figure 3 (a) PP- and (b) PS-wave reflection coefficients for four VTI/HTI interfaces. The overburden shale has weak VTI anisotropy ($\epsilon=0.01, \delta=0, \text{and } \gamma=0.01$). Gas sands with different fracture density from 5% to 20% are simulated.

Conclusions

We have introduced a generalized form of the $qP-qP$ and the $qP-qS$ wave reflection coefficients for TI media in terms of impedance matrices. The equations are derived, based on the exact solution for orthorhombic media. Reduced equations for VTI and HTI media are derived by considering weak anisotropy. We use three single-interface models to evaluate the equations. The generalized equations have sufficient accuracy even for relatively strong anisotropy. Simplified equations for VTI media show good accuracy when the angle of incidence is small. We use the reflection coefficients for HTI media to evaluate the effects of fractures on gas sand AVO responses. The amplitude of the $qP-qP$ wave at wide angle apertures, and that of $qP-qS$ at small angle apertures, is sensitive to the presence of fractures.

Acknowledgement

This study is sponsored by the research funds provided to new recruitments of China University of Petroleum-Beijing (YJRC-2011-03).

References